
Kubernetes for Newbies

Greg Horie



Overview
● Linux Containers

○ Quick intro / recap

● Kubernetes - What is it?
● Kubernetes Architecture
● Live Demo

○ Kubernetes Pod
○ Kubernetes Deployment
○ Kubernetes Service

● Summary
● Future Topics



Linux Containers - Quick Intro / Recap
● A lightweight method for running multiple applications under one Linux host
● Feature - Portability

○ Each container encapsulates its dependencies
○ Ensures consistent behavior across environments

● Feature - Efficiency
○ Containers share the host's kernel
○ Lower overhead compared to a virtual machine

● Feature - Scalability
○ Containers can be spun up or shut down quickly
○ Enables rapid deployment and scaling



Containers - The Challenges
● Container runtime runs on a single host - great for dev, but not prod
● Making containers production-worthy requires more
● Challenges to consider:

○ Redundancy - i.e. multiple hosts in case of failure
○ Networking across redundant hosts
○ Shared file systems, configurations, secrets
○ Load balancing
○ Scheduling workloads
○ etc.



Kubernetes - What is it?
● K8S = Kubernetes
● Kubernetes is Greek for helmsman or pilot

○ Following the container / Docker shipping metaphor

● K8S is an open-source container orchestration platform
● Automates the deployment, scaling, and management of containerized 

applications across a set of hosts (nodes)



Kubernetes - History
● 2003-2004 - Borg

○ Early orchestration platform built at Google to manage 
container-based applications

● 2014 - Kubernetes open-sourced
○ Google engineers open sourced K8S (based on Borg)

■ Written in the Go programming language

● 2015 - Kubernetes 1.0 released
○ Google partners with the Linux Foundation

■ Forms the Cloud Native Computing Foundation (CNCF)
○ CNCF goes on to host many open source projects - containerd, prometheus, etcd, etc.

● 2017 - Winner of the container wars
○ Industry rallies around K8S - Docker, Microsoft AKS, Amazon EKS, etc.

● Today
○ Continues to evolve with a strong community contributing to its future



Kubernetes - Architecture
Control plane (master) nodes

● kube-apiserver - Exposes Kubernetes 
API for cluster management.

● kube-controller-manager - Manages 
desired state via controllers.

● kube-scheduler - Assigns Pods to nodes 
based on resource requirements.

● etcd - Distributed key-value store for 
cluster data.

● … and many more depending on your 
environment.



Kubernetes - Architecture
Worker nodes

● kubelet - Agent running on workers, 
executing instructions from the control plane. 

● container runtime - Software responsible for 
running containers (e.g. Docker).

● kube-proxy - Maintains network rules for 
load balancing inside the cluster.

● CNI (Container Network Interface) - 
Overlay network enabling Pod 
communications across nodes.



Minikube & Project Prep
Note - Assumes container runtime installed - e.g. Docker

Install minikube
$ curl -LO \ 
https://storage.googleapis.com/minikube/releases/latest/minikube-linux-amd64

$ sudo install minikube-linux-amd64 /usr/local/bin/minikube

Install kubectl
$ curl -LO "https://dl.k8s.io/release/$(curl -L -s 
https://dl.k8s.io/release/stable.txt)/bin/linux/amd64/kubectl"

$ sudo install kubectl /usr/local/bin/kubectl

GitHub Repo
$ git clone \ 
  https://github.com/netserf/netsig-presentation-kubernetes-for-newbies.git



Minikube Init
Start Cluster

$ minikube start --nodes 2 -p newbie-demo

$ minikube status -p newbie-demo

$ minikube ssh -p newbie-demo -n newbie-demo # control plane node
$ ps -e | grep -E 'kube|etcd'

$ minikube ssh -p newbie-demo -n newbie-demo-m02 # worker node
$ ps -e | grep -E 'kube|docker'

Nodes Provisioned

$ kubectl get nodes

$ kubectl describe nodes



Namespaces
● Resource Partitioning - Divides cluster resources into logical groups.
● Isolation - Securely share cluster with multiple teams.

Create a namespace:

$ kubectl get namespace

$ kubectl create namespace newbie-ns

$ kubectl describe namespace

$ kubectl config set-context \
  newbie-demo --namespace=newbie-ns



Namespace: kube-system
● System Components - Dedicated namespace for management components.
● Critical Operations - Hosts management components (schedulers, 

controllers, network plugins, etc.) essential for cluster operations.
● Isolated - Separates critical system components from user workloads.

$ kubectl get namespace kube-system

$ kubectl get pods --namespace=kube-system



K8S Pod
● Basic Unit -The smallest unit in the Kubernetes object model

○ Each Pod containers 1-to-many containers

● Isolation - Pod processes and resources are isolated from other Pods
○ Like  a mini virtual machine

● Shared Resources - Containers within a Pod share the same IP addresses, 
ports, volumes, configs, etc. 



Run a K8S Pod
# Create a Pod imperatively

$ kubectl run nginx-pod --image=nginx:latest --restart=Never

$ kubectl delete pod nginx-pod

# Create a Pod declaratively

$ kubectl apply -f k8s/nginx-pod.yaml



Take a Look at the Pod
$ kubectl get pod nginx-pod [-o wide] [-o yaml]

$ kubectl describe pod nginx-pod

$ kubectl logs nginx-pod

$ kubectl exec -it nginx-pod -- /bin/bash
$ curl <container-ipaddr>:80

$ kubectl port-forward nginx-pod 8080:80

$ kubectl delete pod nginx-pod



K8S Deployment
● Scalability - Scale applications up or down by 

adjusting replica counts.
● Self-Healing - Health checks and automatic 

replacement of unhealthy pods.
● Rolling Updates - Updates without downtime, 

with quick rollback options.

● … this is where K8S value starts to show.



Run a K8S Deployment
# Create a deployment imperatively

$ kubectl create deployment nginx-deployment --image=nginx:latest

$ kubectl scale deployment nginx-deployment --replicas=3

$ kubectl delete deployment nginx-deployment

# Create a deployment declaratively

$ kubectl apply -f k8s/nginx-deployment.yaml



Take a Look at the Deployment
$ kubectl get deployment nginx-deployment [-o wide] [-o yaml]

$ kubectl describe deployment nginx-deployment

$ kubectl get pods  # look at pods supporting this deployment

$ kubectl logs <pod-name> # use pod names discovered



K8S Service
● Load Balancing - Distributes incoming traffic among pods.
● Stable Endpoint - Provides a single, stable endpoint for communications.
● Flexible - Facilitates both internal cluster and external requests.



Run a K8S Service
# Expose the deployment imperatively

$ kubectl expose deployment nginx-deployment \
  -–name=nginx-service --port=80 --type=NodePort

$ kubectl delete service nginx-service

# Expose the deployment declaratively

$ kubectl apply -f k8s/nginx-service.yaml



Take a Look at the Service
$ kubectl get service nginx-service

$ kubectl describe service nginx-service

$ minikube service nginx-service --url \
  -p newbie-demo -n newbie-ns

$ curl <url>

$ kubectl logs <pod-name>



Clean-up
$ minikube delete -p newbie-demo

$ minikube status -p newbie-demo



Summary
● Kubernetes is a container orchestration platform
● Organizes machines (nodes) into clusters
● Streamlines the lifecycle management of containerized applications



Possible Future Discussions
● Orchestration

○ K8S ConfigMaps, Secrets, Persistent Volumes
○ K8S Ingress, Gateway
○ Istio Service Mesh
○ Hashicorp Nomad

● Observability
○ Prometheus / Grafana
○ ELK / EFK
○ Loki

● Messaging
○ RabbitMQ / ActiveMQ

● Data Pipelines
○ Airflow / Dagster

● Other ideas welcome!



Backup Slides



System Containers vs. Application Containers
System Containers:

● Running system-level processes and services
○ Like a mini virtual machine

● A lightweight environment for system-level tasks
● Designed to encapsulate and deploy 

components of the operating system 
○ System daemons - systemd, cron, rsyslog, etc.

● No goal to decouple services any more than a 
traditional VM or bare-metal host

● Examples
○ LXC / LXD



System Containers vs. Application Containers
Application Containers:

● Designed to encapsulate individual applications and their dependencies
○ Fosters portability across different environments
○ Enables a microservices architecture

● Optimizes performance and scalability for the application itself
○ Avoids oversubscribing resources for more efficient use of host resources

● Examples
○ Docker
○ Containerd
○ Podman
○ CRI-O
○ Kubernetes


