IPv6 to the Rescue


IPv6 to the Rescue

by Craig Miller

Your embedded device has been running great for the past few weeks, and now all the sudden, it can't be found on the network. You can't ssh into see what the problem is, it has just disappeared.

Lots of reasons why this may have happened, perhaps the program hit a bug and crashed, or more likely, it has forgotten its IPv4 address. Sure you can just "turn it off and on again" and that may fix the problem, or it could make it worse, if it was writing out to the SD Card at the time you pulled power.

The real answer is to log in and find out what is really going on, but as I said, for some reason your Pi, router, or device isn't responding. So what do you do?

IPv6 to the Rescue

But if you setup your network as a dual-stack network, then your device already has not only an IPv4 address, but also an IPv6 address as well. And if you put the IPv6 address into your local DNS, then you can just ssh to the hostname, and see what is going on with your device.

But what if you do have a dual-stack network (your ISP is providing IPv6) but you haven't really done anything with IPv6. How can you use it to rescue your device?

ssh to the IPv6 address of the device, and Bob's your uncle.

Finding the IPv6 Address of your device

Unlike IPv4 network scanners, scanning IPv6 networks is much more challenging. After all, instead of looking at 254 addresses, you are now looking to scan 18,446,744,073,709,551,616 or 18 quintillion addresses. Assuming that you use the fastest scanner zmap which claims to be able to scan the entire IPv4 internet (all 4 billion addresses) in 45 minutes. With 18 quintillion possible addresses, it is still going to take 367,719 years! (2^32 *45 min / 60 min/ 24 hours/ 365 days). And zmap doesn't support IPv6 (and you can see why)

Fortunately, there are non-brute-force solutions to the problem.

IPv6 Basics, the all-nodes address

Although there is no broadcast in IPv6, there is a specific multicast address that all nodes must listen to. This is called the all-nodes address, or ff02::1. It is possible to send a ping to the all-nodes address, and get multiple responses back, similar to pinging the IPv4 broadcast address will (used to) return multiple responses.

$ ping6 -c 2 -I wlan0 ff02::1
PING ff02::1(ff02::1) from fe80::f203:8cff:fe3f:f041%wlan0 wlan0: 56 data bytes
64 bytes from fe80::f203:8cff:fe3f:f041%wlan0: icmp_seq=1 ttl=64 time=0.140 ms
64 bytes from fe80::2ac6:8eff:fe16:19d7%wlan0: icmp_seq=1 ttl=64 time=7.32 ms (DUP!)
64 bytes from fe80::21e:6ff:fe33:e990%wlan0: icmp_seq=1 ttl=64 time=7.66 ms (DUP!)
64 bytes from fe80::216:3eff:fea2:94e8%wlan0: icmp_seq=1 ttl=64 time=8.67 ms (DUP!)
64 bytes from fe80::ba27:ebff:fe89:bc51%wlan0: icmp_seq=1 ttl=64 time=9.60 ms (DUP!)
64 bytes from fe80::4aa2:12ff:fec2:16df%wlan0: icmp_seq=1 ttl=64 time=9.73 ms (DUP!)
64 bytes from fe80::216:3eff:feff:2f9d%wlan0: icmp_seq=1 ttl=64 time=10.6 ms (DUP!)
64 bytes from fe80::f203:8cff:fe3f:f041%wlan0: icmp_seq=2 ttl=64 time=0.686 ms

--- ff02::1 ping statistics ---
2 packets transmitted, 2 received, +6 duplicates, 0% packet loss, time 1002ms
rtt min/avg/max/mdev = 0.140/6.814/10.696/3.840 ms

In IPv6, multicast addresses are associated with multiple interfaces (there is an all-nodes address on each interface), therefore it is necessary to specify an interface -I to ping, or use scoped address notation (RFC 4007) with %interface.

OK, but how to we find the IPv6 address in my dual-stack network?

Using an open source utility, v6disc.sh, which uses the all-nodes technique discovers the nodes on your IPv6 network in a matter of seconds, rather than years.

$ ./v6disc.sh 
WARN: avahi utis not found, skipping mDNS check 
-- Searching for interface(s) 
-- Found interface(s):  eth0 
-- INT:eth0 prefixs: 2001:470:db8:101 
-- Detecting hosts on eth0 link 

-- Discovered hosts for prefix: 2001:470:db8:101 on eth0 
2001:470:db8:101::1                      00:24:a5:f1:07:ca    Buffalo
2001:470:db8:101:203:93ff:fe67:4362      00:03:93:67:43:62    Apple
2001:470:db8:101:211:24ff:fece:f1a       00:11:24:ce:0f:1a    Apple
2001:470:db8:101:211:24ff:fee1:dbc8      00:11:24:e1:db:c8    Apple
2001:470:db8:101:226:bbff:fe1e:7e15      00:26:bb:1e:7e:15    Apple
2001:470:db8:101::303                    d4:9a:20:01:e0:a4    Apple
2001:470:db8:101:3e2a:f4ff:fe37:dac4     3c:2a:f4:37:da:c4    BrotherI
2001:470:db8:101:6a1:51ff:fea0:9339      04:a1:51:a0:93:38    Netgear
2001:470:db8:101:b41f:18a3:a97c:4a0c     10:9a:dd:54:b6:34    Apple
2001:470:db8:101::9c5                    b8:27:eb:89:bc:51    Raspberr

The utility looks up the Ethernet MAC address manufacturer and prints it in the third column.

As you can see it is easy to spot the Raspberry Pi on this network.

But wait, I don't have a dual-stack network, now what?

So you have Shaw for an ISP, and they can't spell IPv6, now what? Another IPv6 fact is that every device which has an IPv6 stack, must have a link-local address. The link-local address is used for all sorts of things, including Neighbour Discovery Protocol (NDP), the IPv6 equivalent of ARP. Therefore, even if your network doesn't have an IPv6 connection to the internet, your IPv6-enabled device will have a link-local address.

Fortunately, v6disc.sh also can detect link-local addresses as fast as it detects IPv6 global addresses (in mere seconds).

$ ./v6disc.sh -i wlan0 -L
WARN: avahi utis not found, skipping mDNS check 
-- INT:wlan0    prefixs:  
-- Detecting hosts on wlan0 link 
-- Discovered hosts for prefix: fe80: on wlan0 
fe80::216:3eff:fea2:94e8                 00:16:3e:a2:94:e8    Xensourc
fe80::216:3eff:feff:2f9d                 00:16:3e:ff:2f:9d    Xensourc
fe80::21e:6ff:fe33:e990                  00:1e:06:33:e9:90    Wibrain
fe80::2ac6:8eff:fe16:19d7                28:c6:8e:16:19:d7    Netgear
fe80::4aa2:12ff:fec2:16df                48:a2:12:c2:16:df    
fe80::ba27:ebff:fe89:bc51                b8:27:eb:89:bc:51    Raspberr
fe80::f203:8cff:fe3f:f041                f0:03:8c:3f:f0:41    Azurewav
-- Pau 

Link-local addresses are not globally unique, and therefore an interface must be specified with the -i, and the -L tells v6disc.sh to only detect link-local addresses.

Again, as you can see, it is easy to pick out the Raspberry Pi link-local address on this network.

Now I have the IPv6 address, how do I use it?

With the Global or link-local IPv6 address, all one need to do it ssh into the lost device and find out what is going on.

If using the link-local address, the interface must also be specified with the %intf notation (e.g. <link-local_addr>%wlan0) :

$ ssh cvmiller@fe80::ba27:ebff:fe79:bc51%wlan0
cvmiller@fe80::ba27:ebff:fe79:bc51%wlan0's password: 
Welcome to Ubuntu 18.04.1 LTS (GNU/Linux 4.15.0-1030-raspi2 armv7l)

Last login: Mon Sep 30 19:57:11 2019 from fe80::2ac6:8eff:fe16:19d7%br0

And now you are logged into your wayward device, and you can troubleshoot to figure out what went wrong.

1. Hands On - Using IPv6 to ssh into a host

Discover the IPv6 address of the target and ssh into the device

Discuss the following:


It is advantageous to know some basics of IPv6, even if you don't run IPv6 at your home/business. If the device is IPv6-enabled, it will still have a link-local address which can be used to rescue the device.

IPv6, it is not only the Future of the Internet, but it is also useful in the home/office.

*Fire Engine, Createive Commons

30 September 2019

updated 29 Nov 2020